next
previous
items

Indicator Assessment

Sulphur dioxide (SO2) emissions

Indicator Assessment
Prod-ID: IND-169-en
  Also known as: APE 001
Published 21 Dec 2011 Last modified 11 May 2021
20 min read
This is an old version, kept for reference only.

Go to latest version
This page was archived on 31 Jul 2015 with reason: No more updates will be done
  • EEA-32 emissions of sulphur dioxide (SO2) have decreased by 76% between 1990 and 2009. In 2009, the most significant sectoral source of SOX emissions was Energy production and distribution (70%), followed by emissions occurring from Energy use in industry (13%) and in the Commercial, institutional and households (9%) sector.
  • The reduction in emissions since 1990 has been achieved as a result of a combination of measures, including fuel-switching in energy-related sectors away from high sulphur-containing solid and liquid fuels to low sulphur fuels such as natural gas, the fitting of flue gas desulphurisation abatement technology in industrial facilities and the impact of European Union directives relating to the sulphur content of certain liquid fuels.
  • All of the EU-27 Member States have already reduced their national SOX emissions below the level of the 2010 emission ceilings set in the National Emission Ceilings Directive (NECD). Emissions in 2009 for the three non-EU countries having emission ceilings set under the UNECE/CLRTAP Gothenburg protocol (Liechtenstein, Norway and Switzerland) were also below the level of the respective 2010 ceilings.
  • Environmental context: Sulphur dioxide is emitted when fuels containing sulphur are combusted. It is a pollutant which contributes to acid deposition which in turn can lead to potential changes occurring in soil and water quality. The subsequent impacts of acid deposition can be significant, including adverse effects on aquatic ecosystems in rivers and lakes and damage to forests, crops and other vegetation. SOX emissions also contribute as a secondary particulate pollutant to formation of particulate matter in the atmosphere, an important air pollutant in terms of its adverse impact on human health.
This indicator is discontinued. No more assessments will be produced.

Fig. 2: Change in emissions of sulphur oxides compared with the 2010 NECD and Gothenburg protocol targets (EEA member countries)

Note: The reported change in sulphur dioxide emissions (SO2) for each country, 1990-2009, in comparison with the 2010 NECD and Gothenburg protocol targets.

Fig. 3: Distance-to-target for EEA member countries

Note: The distance-to-target indicator shows how current emissions compare to a linear emission reduction 'target-path' between 1990 emission levels and the 2010 emission ceiling for each country. Negative percentage values indicate the current emissions in a country are below the linear target path; positive values show that current emission lie above a linear target path to 2010.

Significant progress in reducing SOX emissions has been made by many countries; EEA-32 emissions of SOX have decreased by 76% between 1990 and 2009. Within the EEA-32 group of countries, all have reported lower emissions in 2009 compared to 1990 except Luxembourg (almost 20 times greater), Hungary (around eight times greater) and Iceland (four times greater). The large apparent magnitudes of these increases in Luxembourg, and Hungary are mainly due to the inclusion in 2009 reports of emissions from sectors which were not reported in 1990; for example, only ‘Industrial processes’ emissions are reported in CRF data from Hungary in 1990, and Luxembourg in 1990-2005, whilst in 2009 LRTAP submissions emissions are reported in the majority of sectors in both countries.

The large increase in SOX emissions in Iceland, from 20 kt in 1990 to 80 kt in 2009, is due chiefly to the reported emissions from the ‘Energy production and distribution’ sector rising by 52 kt since 1990. This sector alone now contributes 20% of Iceland’s total emissions in 2009. More specifically, these emissions are mostly comprised of emissions from activities related to fugitive emissions from geothermal energy production, peat and other energy extraction. All of the EU-27 Member States have already reduced their national SOX emissions below the level of the emission ceilings set in the National Emission Ceilings Directive (NECD).

Iceland, Lichtenstein, Norway, Switzerland and Turkey are not members of the European Union and hence have no emission ceilings set under the NECD. However, Norway and Switzerland have ratified the UNECE LRTAP Convention’s Gothenburg Protocol, requiring them to reduce their emissions to the agreed ceiling specified in the protocol by 2010. Liechtenstein has also signed, but not ratified the protocol. All three countries have reported emissions in 2009 that were lower than their respective 2010 Gothenburg Protocol ceilings.

The NECD and Gothenburg protocol are currently being reviewed. The revision of the NECD is part of the implementation of the Thematic Strategy on Air Pollution, and a proposal for a revised directive is expected by 2013. A proposal for a revised Gothenburg protocol is presently under international negotiation. The revised protocol is expected to include emission ceilings to be met by 2020 for the four already regulated substances (NOX, NMVOCs, SOX and NH3) and in addition for primary emissions of PM2.5.

Fig. 4: Sector share of sulphur oxides emissions - 2009 (EEA member countries)

Note: The contribution made by different sectors to emissions of sulphur dioxide

Fig. 5: Change in sulphur oxides emissions for each sector between 1990 and 2009 (EEA member countries)

Note: Percentage change in sulphur dioxide (SO2) emissions for each sector between 1990 and 2009.

Fig. 6: Contribution to total change in SOx emissions for each sector (EEA member countries)

Note: The contribution made by each sector to the total change in sulphur dioxide (SO2) emissions between 1990 and 2009.

Substantial SOX emission reductions have been made across a number of sectors including: ‘Road transport’ (a 98% reduction between 1990 and 2009), ‘Energy use in industry' (80%), 'Commercial, institutional and households ' (76%) and 'Waste' (72).

The ‘Energy production and distribution ' sector (encompassing activities such as power and heat generation) is responsible for the largest reduction in absolute terms of emissions, contributing more than 53% of the total reduction in SOX emissions reported by countries. Nevertheless, despite this significant reduction, this single sector remains the most significant source of SOX in the EEA-32 region, contributing 70% of total SOX emissions. Across Europe there is also an increasing awareness of the contribution made to SOX pollutant emissions by national and international ship traffic, and especially the health effects of such emissions whilst at berth (a more detailed discussion of this issue is contained in the TERM indicator fact sheet TERM03 - Transport emissions of air pollutants). From 1st January 2010 all ships using fuel at berth in EU ports for significant periods were required to use exclusively low-sulphur fuel (0.1%), and from 1st July 2010, within SECAs (Sulphur Emission Control Areas) defined in the North Sea, English Channel and Baltic Sea, all ships were required to use fuel with sulphur content not exceeding 1.0%. A reduction in reported SOX emissions may therefore be expected for years from 2010, and further reductions in later years as additional legislation comes into force.

A combination of measures has led to the reductions in SOX emissions. This includes fuel-switching from high-sulphur solid (e.g. coal) and liquid (e.g. heavy fuel oil) fuels to low sulphur fuels (such as natural gas) for power and heat production purposes within the energy, industry and domestic sectors, improvements in energy efficiency, and the installation of flue gas desulphurisation equipment in new and existing industrial facilities. The implementation of several directives within the EU limiting the sulphur content of fuel quality has also contributed to the decrease.

The newer Member States of the European Union have in a number of cases also undergone significant economic structural changes since the early 1990s which has led to a general decline in certain activities which previously contributed significantly to high levels of sulphur emissions (e.g. heavy industry) and the closure of older inefficient power plants.

Supporting information

Permalinks

Geographic coverage

Temporal coverage

Dates

Other info

Document Actions