

Category		Title				
NFR:	5.E	Other waste				
SNAP:	091003 091006 091008	Sludge spreading Biogas production Other production of fuel (refuse derived fuel, etc.)				
ISIC:						
Version	Guidebook 2019					

Coordinator Carlo Trozzi

Contributing authors (including to earlier versions of this chapter)

Katja Hjelgaard, Marc Deslauriers, David R. Niemi and Mike Woodfield

Contents

1	Ove	rview	3
2	Des	cription of sources	3
	2.1	Process description	.3
2	2.2	Techniques	
	2.3	Emissions	
2	2.4	Controls	.3
3	Met	hods	4
	3.1	Choice of method	
	3.2	Tier 1 default approach	.5
-	3.3	Tier 2 technology-specific approach	.5
	3.4	Tier 3 emission modelling and use of facility data	.9
4	Dat	a quality	9
5	Ref	erences	9
6	Poir	nt of enquiry 1	0

1 Overview

This chapter covers the emissions from other waste. Because these are not considered to be significant on a national level for any pollutant, there will only be a brief description and a set of emission factors presented in this chapter. The activities that will be discussed are:

- sludge spreading;
- car fires;
- house fires.

2 Description of sources

2.1 Process description

Sludge spreading

The sludge produced in a wastewater treatment plant is either burned, mechanically dried or dried by spreading in the open air. In the Netherlands some information on the composition of communal sludge is available. Some of the pollutants, especially halogenated hydrocarbons and polycyclic aromatic hydrocarbons (PAHs), might also become airborne on spreading.

Car and house fires

This activity includes mostly unwanted fires in cars and various types of houses.

2.2 Techniques

Not relevant.

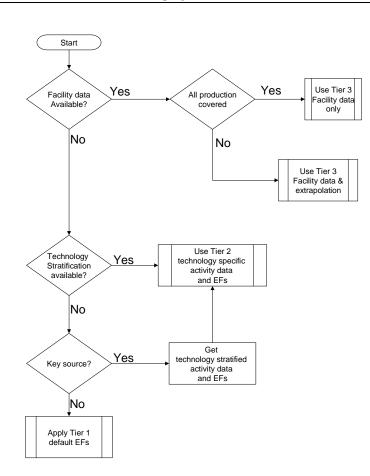
2.3 Emissions

Emissions to air from this source category include odours. Also, small amounts of ammonia are produced. These are considered in this chapter.

Emissions from fires obviously also include emissions of particulates, possibly heavy metals and main pollutants like NO_x, SO₂, CO and non-methane volatile organic compounds (NMVOC).

2.4 Controls

No specific information available for this source category.


3 Methods

3.1 Choice of method

Figure 3-1 presents the procedure to select the methods for estimating emissions from this source category. The basic idea is:

- if detailed information is available; use it;
- if the source category is a key category, a Tier 2 or better method must be applied and detailed input data must be collected. The decision tree directs the user in such cases to the Tier 2 method, since it is expected that it is more easy to obtain the necessary input data for this approach than to collect 'facility level' data needed for a Tier 3 estimate;
- the alternative of applying a Tier 3 method, using detailed process modelling, is not explicitly included in this decision tree. However, detailed modelling will always be done at facility level and results of such modelling could be seen as 'facility data' in the decision tree.

Figure 3-1 Decision tree for source category 5.E Other waste

3.2 Tier 1 default approach

Because the processes considered in this source category are not comparable, no Tier 1 emission factors could be provided for this source category. For each of the specific processes considered in this section, emission factors have been defined at a Tier 2 level. If the decision tree directs the user to a Tier 1 approach, it is recommended to use the Tier 2 approach provided in the next section. It is good practice to use Tier 2 when activity data is available.

3.3 Tier 2 technology-specific approach

3.3.1 Algorithm

To apply the Tier 2 approach, both the activity data and the emission factors need to be stratified according to the different process types that may occur in the country.

The approach followed to apply a Tier 2 approach is as follows.

Stratify the processes in 'other waste' in the country to model the different process types occurring in the national industry into the inventory by:

- defining the production using each of the separate process types (together called 'technologies' in the formulae below) separately; and
- applying technology-specific emission factors for each process type:

$$E_{pollutant} = \sum_{technologies} AR_{productiontechnology} \times EF_{technologypollutant}$$
(1)

where:

EF_{technology,pollutant} = the emission factor for this technology and this pollutant.

A country where only one technology is implemented will result in a penetration factor of 100 % and the algorithm reduces to:

$$E_{pollutant} = AR_{production} \times EF_{technologypollutant}$$
(2)

where:

E_{pollutant} = the emission of the specified pollutant,

AR_{production} = the activity rate for this specific technology,

EF_{pollutant} = the emission factor for this pollutant.

3.3.2 Technology-specific emission factors

This section presents Tier 2 technology-specific emission factors for sludge spreading, car fires and various types of house fires.

Tier 2 emission factors								
	Code Name							
NFR Source Category	5.E	5.E Other waste						
Fuel	NA							
SNAP (if applicable)	091003	Sludge spreading						
Technologies/Practices	Sludge sp	oreading						
Region or regional								
conditions								
Abatement								
technologies								
Not applicable	НСН							
Not estimated	NO _x , CO,	NMVOC, SO ₂ , TSP, PM ₁₀	, PM _{2.5} , BC,	Pb, Cd, Hg	g, As, Cr, Cu, Ni, Se, Zn, PCBs,			
	PCDD/F, Benzo(a)pyrene, Benzo(b)fluoranthene, Benzo(k)fluoranthene,							
	Indeno(1,	Indeno(1,2,3-cd)pyrene, HCB						
Pollutant	Value Unit 95% confidence Reference							
	interval							
	Lower Upper							
NH ₃	50	g/kg NH₃ in the	10	150	EMEP/EEA (2006)			
		sludge						

Table 3-1Tier 2 emission factors for source category 5.E Other waste, sludge spreading

Table 3-2 Tier 2 emission factors for source category 5.E Other waste, car fire

Tion 2 omission fortune								
	Tier 2 emission factors							
	Code Name							
NFR source category	5.E	5.E Other waste						
Fuel	NA							
SNAP (if applicable)								
Technologies/Practices	Car fire							
Region or regional conditions								
Abatement technologies								
Not applicable	НСН							
Not estimated	SO ₂ , NO _x , NMVOC, CO, NH ₃ , BC, As, Cd, Cr, Cu, Hg, Ni, Pb, Se, Zn, HCB, Benzo(a)pyrene, Benzo(b)fluoranthene, benzo(k)fluoranthene, Indeno(1,2,3- cd)pyrene, PCBs							
Pollutant	Value Unit 95 % confidence interval Lower Upper				Reference			
TSP	2.3	kg/fire	1 5		Aasestad (2007)			
PM ₁₀	2.3			5	Aasestad (2007)			
PM _{2.5}					Aasestad (2007)			
PCDD/F	0.048	0.048 mg/fire 0.02 0.1 Hansen (2000)						

Tier 2 emission factors							
	Code	Name					
NFR Source Category	5.E	5.E Other waste					
Fuel	NA						
SNAP (if applicable)							
Technologies/Practices	Detached h	nouse fire					
Region or regional							
conditions							
Abatement technologies							
Not applicable	NH₃, HCH						
Not estimated	NO _x , CO, N	MVOC, SO ₂ , BC, Ni, Se, Zn, P	CBs, Benzo(a)pyrene,			
	Benzo(b)flu	ioranthene, Benzo(k)fluorar	nthene, Inde	no(1,2,3-cd)	pyrene, HCB		
Pollutant	Value	Unit	95% confidence Reference				
		••	5570 001	machiec	Kererence		
				rval	Kererence		
TSP	143.82	kg/fire	inte	rval	Aasestad (2007)*		
TSP PM ₁₀	143.82 143.82		inte Lower	rval Upper	-		
		kg/fire	inte Lower 71.9	Upper 287.6	Aasestad (2007)*		
PM ₁₀	143.82	kg/fire kg/fire	inte Lower 71.9 71.9	rval Upper 287.6 287.6	Aasestad (2007)* Aasestad (2007)*		
PM ₁₀ PM _{2.5}	143.82 143.82	kg/fire kg/fire kg/fire	inte Lower 71.9 71.9 71.9 71.9	rval Upper 287.6 287.6 287.6	Aasestad (2007)* Aasestad (2007)* Aasestad (2007)*		
PM ₁₀ PM _{2.5} Pb	143.82 143.82 0.42	kg/fire kg/fire kg/fire g/fire	inte Lower 71.9 71.9 71.9 0.2	Upper 287.6 287.6 287.6 0.8	Aasestad (2007)* Aasestad (2007)* Aasestad (2007)* Aasestad (2007)*		
PM ₁₀ PM _{2.5} Pb Cd	143.82 143.82 0.42 0.85	kg/fire kg/fire g/fire g/fire g/fire	inte Lower 71.9 71.9 71.9 0.2 0.4	Upper 287.6 287.6 287.6 0.8 1.7	Aasestad (2007)* Aasestad (2007)* Aasestad (2007)* Aasestad (2007)* Aasestad (2007)*		
PM ₁₀ PM _{2.5} Pb Cd Hg	143.82 143.82 0.42 0.85 0.85	kg/fire kg/fire g/fire g/fire g/fire	inte Lower 71.9 71.9 71.9 0.2 0.4 0.4 0.4	Upper 287.6 287.6 287.6 0.8 1.7 1.7	Aasestad (2007)* Aasestad (2007)* Aasestad (2007)* Aasestad (2007)* Aasestad (2007)* Aasestad (2007)*		
PM ₁₀ PM _{2.5} Pb Cd Hg As	143.82 143.82 0.42 0.85 0.85 1.35	kg/fire kg/fire kg/fire g/fire g/fire g/fire g/fire	inte Lower 71.9 71.9 71.9 0.2 0.4 0.4 0.7	Upper 287.6 287.6 287.6 0.8 1.7 1.7 2.7	Aasestad (2007)* Aasestad (2007)* Aasestad (2007)* Aasestad (2007)* Aasestad (2007)* Aasestad (2007)* Aasestad (2007)*		

Table 3-3 Tier 2 emission factors for source category 5.E Other waste, detached house fire

*Personal contact with Kristin Aasestad has provided a correction of the units which are inaccurate in the text of Aasestad (2007)

Tier 2 emission factors							
	Code Name						
NFR Source Category	5.E Other waste						
Fuel	NA						
SNAP (if applicable)							
Technologies/Practices	Undetache	d house fire					
Region or regional							
conditions							
Abatement technologies							
Not applicable	NH₃, HCH						
Not estimated	NO _x , CO, N	MVOC, SO ₂ , BC, Ni, Se, Zn, P	CBs, Benzo(a	a)pyrene,			
	Benzo(b)flu	ioranthene, Benzo(k)fluorar	nthene, Inde	no(1,2,3-cd)	pyrene, HCB		
Pollutant	Value	Unit	95% confidence Reference				
			inte	rval			
			Lower	Upper			
TSP	61.62	kg/fire	30.8	123.2	Aasestad (2007)*		
PM ₁₀	61.62	kg/fire	30.8	123.2	Aasestad (2007)*		
PM _{2.5}	61.62	kg/fire	30.8	123.2	Aasestad (2007)*		
Pb	0.18	g/fire	0.1	0.4	Aasestad (2007)*		
Cd	0.36	g/fire	0.2	0.7	Aasestad (2007)*		
Hg	0.36	g/fire	0.2	0.7	Aasestad (2007)*		
As	0.58	g/fire	0.3	1.2	Aasestad (2007)*		
Cr	0.55	g/fire	0.3	1.1	Aasestad (2007)*		
Cu	1.28	g/fire	0.6	2.6	Aasestad (2007)*		
PCDD/F	0.62	mg/fire	0.3	1.2	Aasestad (2007)*		

Table 3-4 Tier 2 emission factors for source category 5.E Other waste, undetached house fire

*Personal contact with Kristin Aasestad has provided a correction of the units which are inaccurate in the text of Aasestad (2007)

Tier 2 emission factors								
	Code Name							
NFR Source Category	5.E							
Fuel	NA							
SNAP (if applicable)								
Technologies/Practices	Apartmer	nt building fire						
Region or regional		0						
conditions								
Abatement technologies								
Not applicable	NH₃, HCH							
Not estimated	NO _x , CO,	NMVOC, SO ₂ , BC, Ni, Se,	Zn, PCBs,	Benzo(a)py	vrene,			
	Benzo(b)f	luoranthene, Benzo(k)fl	uoranthen	e, Indeno(1,2,3-cd)pyrene, HCB			
Pollutant	Value	Unit	95% confidence Reference					
				rval				
			Lower	Upper				
TSP	43.78	kg/fire	21.9	87.6	Aasestad (2007)*			
PM ₁₀	43.78	kg/fire	21.9	87.6	Aasestad (2007)*			
PM _{2.5}	43.78	kg/fire	21.9	87.6	Aasestad (2007)*			
Pb	0.13	g/fire	0.1	0.3	Aasestad (2007)*			
Cd	0.26	g/fire	0.1	0.5	Aasestad (2007)*			
Hg	0.26	g/fire	0.1	0.5	Aasestad (2007)*			
As	0.41	g/fire	0.2	0.8	Aasestad (2007)*			
Cr	0.39	g/fire	0.2 0.8 Aasestad (2007)*					
Cu	0.91	g/fire	0.5	1.8	Aasestad (2007)*			
PCDD/F	0.44	mg/fire	0.2	0.9	Aasestad (2007)*			

Table 3-5 Tier 2 emission factors for source category 5.E Other waste, apartment building fire

*Personal contact with Kristin Aasestad has provided a correction of the units which are inaccurate in the text of Aasestad (2007)

Table 3-6 Tier 2 emission factors for source category 5.E Other waste, industrial building fire

Tier 2 emission factors							
	Code Name						
NFR Source Category	5.E Other waste						
Fuel	NA						
SNAP (if applicable)							
Technologies/Practices	Industrial	building fire					
Region or regional							
conditions							
Abatement technologies							
Not applicable	NH ₃ , HCH						
Not estimated	NO _x , CO, N	MVOC, SO ₂ , BC, Ni, Se, Zn	n, PCBs, Ben	zo(a)pyren	e,		
	Benzo(b)fl	uoranthene, Benzo(k)fluo	ranthene, li	ndeno(1,2,3	-cd)pyrene, HCB		
Pollutant	Value	Unit	95% cor	nfidence	Reference		
			inte	rval			
			Lower	Upper			
TSP	27.23	kg/fire	13.6	54.5	Aasestad (2007)*		
PM ₁₀	27.23	kg/fire	13.6	54.5	Aasestad (2007)*		
PM _{2.5}	27.23	kg/fire	13.6	54.5	Aasestad (2007)*		
Pb	0.08	g/fire	0.04	0.2	Aasestad (2007)*		
Cd	0.16	g/fire	0.1	0.3	Aasestad (2007)*		
Hg	0.16	g/fire	0.1	0.3	Aasestad (2007)*		
As	0.25	g/fire	0.1	0.5	Aasestad (2007)*		
Cr	0.24	g/fire	0.1	0.5	Aasestad (2007)*		
Cu	0.57	g/fire	0.3	1.1	Aasestad (2007)*		
PCDD/F	0.27	mg/fire	0.1	0.5	Aasestad (2007)*		

*Personal contact with Kristin Aasestad has provided a correction of the units which are inaccurate in the text of Aasestad (2007)

3.3.3 Abatement

A number of add-on technologies exist that are aimed at reducing the emissions of specific pollutants. The resulting emission can be calculated by replacing the technology-specific emission factor with an abated emission factor as given in the formula:

$$EF_{technologyabated} = (1 - \eta_{abatement}) \times EF_{technologyunabated}$$
 (3)

No default abatement efficiency information is available.

3.3.4 Activity data

For sludge spreading, the relevant activity statistics are the standard statistics on sludge production and the fraction that is dried by spreading.

For accidental fires, activity data can be obtained from national statistics or national emergency management agencies.

3.4 Tier 3 emission modelling and use of facility data

Not available for this source.

4 Data quality

No source specific issues are applicable to this source category.

5 References

Aasestad K. (eds.) (2007). Norwegian Emission Inventory 2007. Documentation of methodologies for estimating emissions of greenhouse gases and long-range transboundary air pollutants. Report 2007/38, Statistics Norway.

Boldrin, A., Andersen, J.K. & Christensen, T.H. LCA-report: Environmental assessment of garden waste management in Århus Kommune (Miljøvurdering af haveaffald i Århus kommune), Department of Environmental Engineering, Technical University of Denmark.

EMEP/EEA, (2006). EMEP/Corinair Emission Inventory Guidebook, version 4 (2006 edition), published by the European Environment Agency. Technical report No 11/2006, (https://www.eea.europa.eu/publications/EMEPCORINAIR4) accessed 23 July 2019.

Hansen, E., Substance Flow Analysis for dioxins in Denmark, Environmental Project No. 570 2000, Miljøprojekt, the Danish Environmental Protection Agency, (In Danish), (<u>http://www2.mst.dk/udgiv/publications/2000/87-7944-295-1/pdf/87-7944-297-8.pdf</u>) accessed 23 July 2019.

6 Point of enquiry

Enquiries concerning this chapter should be directed to the relevant leader(s) of the Task Force on Emission Inventories and Projection's expert panel on combustion and industry. Please refer to the TFEIP website (<u>www.tfeip-secretariat.org/</u>) for the contact details of the current expert panel leaders.