All official European Union website addresses are in the europa.eu domain.
See all EU institutions and bodiesDo something for our planet, print this page only if needed. Even a small action can make an enormous difference when millions of people do it!
Briefing
Nature, and the resources it provides, sustains our societies. Resources such as energy, water, food, land, and materials underpin the functioning of the systems of production and consumption (see Figure 1) that support our physiological needs and overall well-being.
Source: EEA.
Since the 1950s, the demand for natural resources associated with a growing human population, economic activity and changing lifestyles has reached an unprecedented high level (Steffen et al., 2011, 2015). This is putting tremendous pressure on the Earth’s life-support systems through climate change, biodiversity loss, changes in the chemical composition of the atmosphere, oceans and soil, etc. (IPCC, 2018, 2021; IPBES, 2019; IRP, 2019; UNEP, 2019). Projections suggest that the situation could worsen significantly in future, through a possible doubling of the global demand for materials by 2060 (IRP, 2019).
Managing natural resources wisely is key ‘to ensure that [sustainable development] meets the needs of the present without compromising the ability of future generations to meet their own needs’, as pointed out by the Brundtland Commission in Our common future (UN, 1987). Therefore, natural resources require careful stewardship, protection and conservation so that they are available in sufficient quantities and quality to sustain future generations.
Accordingly, natural resource management and conservation strategies are central to Europe’s environmental sustainability policy framework, which is increasingly shaped by ambitious long-term visions and targets. The European Green Deal explicitly states that it ‘also aims to protect, conserve and enhance the EU’s natural capital, and protect the health and well-being of citizens from environment-related risks and impacts’ (EC, 2019a).
In spite of the clear ambitions, natural resources have historically been governed in separate resource categories, often by adopting a supply chain perspective encompassing production and consumption aspects (Bleischwitz et al., 2018). This approach has clearly been insufficient to deal with the systemic nature of the challenges faced and to ensure adequate management and protection.
The concept of the ‘resource nexus’ was introduced in resource management to account for key interdependencies among resources and their use (Bleischwitz et al., 2018). Since 2011, when it was first introduced (Hoff, 2011), the concept has gained prominence in the international research community and among international organisations operating at the science-policy interface (e.g. FAO, 2014; UNEP, 2017; Adamovic et al., 2019; UNU-Flores, 2021; IPBES, 2021). A cluster of Horizon 2020 projects [1] focusing on nexus issues has also been established.
The Food and Agriculture Organization of the United Nations defines the resource nexus as a ‘conceptual approach to better understand and systematically analyse the interactions between the natural environment and human activities, and to work towards a more coordinated management and use of natural resources across sectors and scales’ (FAO, 2014).
While early applications focused on exploring the interlinkages between water, energy and food, further developments embraced other natural resources, including land, materials, waste and ecosystems, and other dimensions such as climate and health. Collating these applications results in a complex web of direct and indirect interactions, which define the ‘nexus’ among the resources. Understanding this network of interactions provides important information, as a given intervention might have different effects across resources — positive or negative — depending on the way they interact. For example, demand for food can be met through various agricultural practices that may require different levels of land, energy, water and other inputs. The same is true for demands on other resources.
In this briefing, a six-node approach is adopted, covering water, energy, food, land, materials and ecosystem services (Figure 1).
The resource nexus can be applied as an integrated approach to policymaking (Hogeboom et al., 2021). Policy interventions associated with one or more natural resources can be less effective, or even counterproductive, if these interactions are not considered. Synergies and trade-offs may be generated across different natural resources and across policy goals, including Sustainable Development Goals (Weitz et al., 2014, 2019; Bleischwitz et al., 2018; Liu et al., 2018). Being aware of these interlinkages is therefore crucial for ensuring policy coherence (Albrecht et al 2018; Adamovic et al., 2019; EEA, 2019).
For this reason, the European Commission’s Environmental Implementation Review (EC, 2019b) proposes adopting a nexus approach for ‘examining issues systematically and in advance’ and supporting sectoral integration across scales. Similar calls have been made in The European environment — state and outlook 2020 (EEA, 2019) and by research projects (MAGIC Consortium, 2020; SIM4NEXUS, 2020).
The European Green Deal aims to 'transform the EU into a fair and prosperous society, with a modern, resource-efficient and competitive economy where there are no net emissions of greenhouse gases in 2050 and where economic growth is decoupled from resource use’ (EC, 2019a). This vision is implemented by a number of strategies, action plans and related legislation aiming to accelerate multiple transitions in a coordinated and systemic fashion. This is illustrated by initiatives such as the Circular Economy Action Plan (CEAP) (EC, 2020a), which aims to tackle environmental, climate and social challenges simultaneously. However, achieving the European Green Deal’s deep and transformative ambitions is likely to require that synergies and trade-offs are analysed systematically in order to ensure policy coherence.
This section uses case studies on organic farming, advanced biofuels and electric vehicles to illustrate the type of knowledge that could be generated by applying the resource nexus approach to specific policy areas at the core of the European Green Deal. A selection of the key synergies and trade-offs identified in each case study is presented Table 1. Figure 2 shows the interlinkages for the organic farming case study. Further information on the case studies can be found in the background report underpinning this briefing.
The European Green Deal aims to increase organic farmland in the EU from 8.5% today to 25% in 2030. In the scientific literature, organic farming is often presented as an opportunity to ease environmental pressures, as the use of synthetic fertilisers is not permitted on organic farmland and the range of antibiotics and chemical pesticides is restricted (EC, 2021a). An overview of the synergies and trade-offs for the case of organic farming is presented in Figure 2.
Several synergies are associated with the increase in organic agriculture. Organically farmed land has on average 30% more biodiversity than conventionally farmed land (EC, 2021a), with advantages for above- and below-ground biodiversity (Tuck et al., 2014; IPBES, 2019). Soil fertility is higher, which can be positive for food production in the long term (Seufert and Ramankutty, 2017), and soil erosion may be reduced and its water-holding capacity increased (EEA 2020a; Seufert and Ramankutty, 2017). Furthermore, organic farming reduces water pollution, as the use of pesticides and antimicrobials is reduced (WWAP 2015; EEA 2020a), which is also beneficial for aquatic biodiversity. Avoiding synthetic nitrogen fertilisers also helps to reduce energy use, as fertiliser production is energy intensive (Kyriakou et al., 2020).
The main trade-off identified is a potential increase in the demand for land in the short term. This is associated with lower yields per hectare, a consequence of not using synthetic fertilisers, herbicides and pesticides, although other ways of managing pests may reduce the scale of the problem. Moreover, more water and energy will be required to farm larger areas, whether in Europe or elsewhere (de Ponti et al., 2012; Seufert and Ramankutty, 2017; EEA 2020a). This could lead to a ‘virtual’ import of land and/or the replacement of natural ecosystems by farmland. However, this trade-off could be mitigated if there were shifts in diet and reductions in food waste (Willet et al., 2019).
In the long term, the demand for additional land is mitigated by increases in soil fertility and consequently gradually increasing agricultural yields. While aimed primarily at reducing pressures on ecosystems and reducing biodiversity loss, organic agriculture also contributes synergistically to achieving other goals, such as providing healthy food and nutrient recycling. The overall effects on energy and water demand and on GHG emissions are unclear and context specific. Although extensive practices reduce energy demand and emissions per hectare, lower yields and longer rearing times (in animal husbandry) are likely to increase emissions per kilograms of food product (Skinner et al. 2014; Smith et al., 2019; Pieper et al., 2020).
Case study |
Key policy objective |
Potential synergies across resources (including health and climate considerations) |
Potential trade-offs across resources (including health and climate considerations) |
1. Organic farming |
Upscale organic agriculture in Europe (b) |
|
|
2. Advanced biofuels |
Decarbonise transport (c) |
|
|
3. Electric vehicles (EVs) |
Uptake of EVs as part of the ‘zero-emission’ vehicles target (e) |
|
|
Notes:
(a) See the background report for the full list of potential synergies and trade-offs.
(b) The farm to fork strategy (EC, 2020b) aims for 25% of total farmland to be organically farmed by 2030.
(c) Advanced biofuels (i.e. biofuels produced from feedstocks listed in Annex IX of the Renewable Energy Directive — recast (RED II; EU, 2018)) are required to be at least 0.2% in 2022, at least 1% in 2025 and at least 3.5% in 2030 of final consumption of energy in the transport sector.
(d) Emissions of GHGs due to land use changes vary significantly by the type of biomass and adherence to sustainability criteria. The RED II (EU, 2018) defines a series of sustainability and GHG emission criteria that bioliquids used in transport must comply with.
(e) The sustainable and smart mobility strategy aims to have at least 30 million zero-emission vehicles in operation on EU roads by 2030 (EC, 2020c).
(f) On average, based on the current EU energy mix. The situation can be very different from country to country (see EEA, 2018).
Figure 2. Potential synergies and trade-offs associated with increasing organic farming illustrated for the ‘Food-Land-Ecosystem services’ nexus
Source: EEA.
Several points can be drawn from the three case studies.
Firstly, knowledge gaps were found at various stages of policy development, in particular policy design and impact assessment. For example, the case study on (advanced) biofuels highlighted that the impacts associated with the decarbonisation of marine transport and aviation were not considered together in impact assessment studies. Consequently, the cumulative effects of policy interventions targeting a large-scale expansion of bioenergy has unexplored implications for aspects such as land use, ecosystem services, food production and other resources.
Secondly, adopting a resource nexus lens could support the identification of potential imbalances associated with policy interventions. All three case studies are on policy areas that focus on stimulating change in production practices and technologies, rather than on creating enabling conditions to reduce demand. As illustrated in the organic farming case study, the trade-offs associated with this production practice (e.g. higher land demand) could be countered if dietary change and food waste were effectively addressed. This highlights how crucial demand side management is and supports calls for strengthening related policies.
Thirdly, adopting a nexus approach can help to identify possible winners and losers among those affected by policy interventions. Resource-related implications will affect stakeholders disproportionally (see EEA, 2021b) and might pose serious challenges if appropriate processes and measures are not put in place.
‘All EU actions and policies will have to contribute to the European Green Deal objectives. The challenges are complex and interlinked. The policy response must be bold and comprehensive and seek to maximise benefits for health, quality of life, resilience and competitiveness. It will require intense coordination to exploit the available synergies across all policy areas’ (EC, 2019a).
Policy interventions are powerful drivers of change. At the heart of the European Green Deal lies the unprecedented ambition to reconfigure production and consumption systems such as energy, food, mobility and the built environment towards sustainability. Given their shared reliance on natural resources (see Figure 1) and the scale of the changes envisaged, it is likely that policy interventions might generate both synergies and trade-offs across natural resources. The case studies presented are from areas where coherence should be pursued, but they are far from being the only examples relevant to the European Green Deal.
While the European Green Deal provides a strong strategic foundation to guide and align policy action, current knowledge and governance systems are inadequate to deliver transformational policies commensurate with the sustainability challenges (Oliver et al., 2021). A systemic and systematic analysis of such mechanisms can help to prevent shifting the burden to other resources and geographical areas (EEA, 2019) and costly misdirected investments ‘at a time when public finances are expected to come under increasing stress in coming decades owing to parallel transitions in society’ (EEA, 2020b).
Against this backdrop, the uptake and application of resource nexus thinking to the policy initiatives developed under the European Green Deal could help put the concept of dynamic policy coherence into practice (EC, 2020d). One opportunity would be applying it to the EU policy- and law-making cycle (SIM4NEXUS, 2020): for example during the preparation phase of a new legislative proposal, as part of the roadmap or impact assessment for a new law and policy, or to inform the monitoring and evaluation of existing policies. Including resource nexus-inspired approaches in the European Commission Better Regulation guidelines and toolbox [4] (EC, 2021b,c), could also increase their uptake across impact assessment studies and ensure that the appropriate knowledge base is developed.
Yet, it is important to remember that the resource nexus is just one of the approaches that can help navigate complex transitions towards sustainability. Only by combining multiple framings, perspectives and forms of knowledge with frameworks and tools, such as integrated modelling, foresight studies, and transition governance, can the systemic understanding of challenges and opportunities be strengthened, thus providing a better knowledge base for supporting EU policy coherence.
[2] the use of degraded land for agro-forestry that relies on diverse species could improve biodiversity, yet other options like returning the same land to nature could generate higher environmental benefits (ETC, 2021).
[3]On average, based on the current EU energy mix. The situation can be very different from country to country (see EEA, 2018).
[4] The EU better regulation policy and toolbox set out the principles (and the detailed advice) followed by the European Commission when preparing new proposals and when monitoring and evaluating existing legislation.
The country assessments are the sole responsibility of the EEA member and cooperating countries supported by the EEA through guidance, translation and editing.
For references, please go to https://www.eea.europa.eu/publications/resource-nexus-challenges-and-opportunities/resource-nexus-and-the-european or scan the QR code.
PDF generated on 04 Jan 2025, 03:36 PM
Engineered by: EEA Web Team
Software updated on 26 September 2023 08:13 from version 23.8.18
Software version: EEA Plone KGS 23.9.14
Document Actions
Share with others